
 38

 PACKAGING, TESTING, AND
DEBUGGING ADD-INS

 Creating an Add-in Installation
Package

 If you’re going to write add-ins, you’re going to have to deal with soft-

ware bugs. Even the simplest add-in is likely to contain bugs, so testing

and debugging your add-ins is a must. However, before you can test and

debug an add-in, you need to install the add-in.

 If you used the Add-in Builder to create your add-in manifest, installation

of the add-in is done automatically for you. However, you’ll still want to

create an installation package so that others can install your add-in.

 ➥ For more information on

using the Add-in Builder, see

“Creating the Manifest with the

Add-in Builder,” p. 662 .
 Creating an add-in installation pack-

age is easy to do. Simply zip the folder

that contains your add-in files and then

change the file extension to .xadd .

(You’ll need to ensure that Windows is

configured to show file extensions.) You

can create a zip file by right-clicking on

your add-in’s folder and selecting Send

To, Compressed (zipped) Folder from

 note
 A great place to share your add-
in is the Microsoft Expression
Gallery at http://gallery.
expression.microsoft.com/ .

 tip
 You cannot double-click on an
 .xadd file to install an add-in. To
install an add-in, you need to use
the Manage Add-ins dialog in
Expression Web.

39_9780789749192_ch38.indd 68939_9780789749192_ch38.indd 689 5/31/12 10:31 AM5/31/12 10:31 AM

Packaging, Testing, and Debugging Add-ins690

8

P
A

R
T

the menu. Once the folder has been zipped, change the file extension of the Zip file to .xadd . Your

add-in is now ready for installation.

 Testing and Debugging Add-ins
 You’ve spent many hours developing a really cool add-in, and you’re eager to upload it to the

Expression Gallery so that other Expression Web users can use it. However, before you do, you

should spend some time testing and debugging your add-in so that users don’t experience prob-

lems. Even if your add-in is completely free, if users experience problems, they will complain and

make sure to let other users know about their trouble. Testing and debugging are critical to the suc-

cess of any add-in.

 Testing Add-ins
 The easiest way to test an add-in is to use it yourself during your normal usage of Expression Web.

However, that’s not the best way. It’s likely that other people who may use your add-in (assuming

you decide to share it with others) use Expression Web differently than you do. Subtle changes in

the way that an add-in is used can expose serious bugs that you’ll want to deal with before you

share your add-in with others.

 The specific scenarios you use when testing your add-in will

differ depending on the complexity of your add-in. For example,

testing the Page Info add-in was fairly simple because the act

of opening and closing pages causes all the JavaScript functions

used by the add-in to execute. However, when you’re dealing

with a more complex add-in, you may have JavaScript functions

that execute only when certain conditions are met. In these situ-

ations, it’s usually best to build a test page that’s designed to call

each of your functions. If an error is encountered, you can then

debug the error more easily.
 I follow some general rules when testing all of my add-ins:

 • Test the add-in with disk-based sites, FTP sites, and HTTP sites.

 • Test the add-in with pages at numerous folder levels within my site.

 • Test the add-in with no sites open in Expression Web.

 • If the add-in requires user input, conduct tests with no input and with bogus input.

 • Find people willing to test the add-in for me and provide feedback.

 I find (and fix) plenty of problems when going through the first four of these rules, but I’m always

amazed at how many problems I miss that are uncovered by other people using my add-ins.

Regardless of how much effort you put into predicting how users will use your add-in, you will still

encounter a surprising number of unexpected scenarios once your add-in gets into the hands of users.

 When you provide your add-in to testers, make sure that you give them some guidelines for reporting

bugs. For example, let them know that you need detailed, step-by-step instructions for reproducing

 tip
 Keep in mind that how any par-
ticular function works is often
impacted by external factors.
Create as many test scenarios
as you can when testing your
functions. This section gives you
some pointers on how to do that.

39_9780789749192_ch38.indd 69039_9780789749192_ch38.indd 690 5/31/12 10:31 AM5/31/12 10:31 AM

691Testing and Debugging Add-ins

38

C
H

A
P

T
E

R

any problems they encounter. Provide an example of a bug submission so that they’ll know what you

expect. If you don’t, you often won’t get enough detail to reproduce a particular problem.

 As an example, the following steps are not sufficient to reproduce a problem:

 1. Opened my site.

 2. Started editing my page.

 3. Got the error message.

 However, the following steps would likely allow you to reproduce a problem and get it corrected:

 1. Opened a site at http://www.mysite.com.

 2. Opened aboutme.htm from the root folder.

 3. Switched to Design View.

 4. Added the text “Click Here for Info”.

 5. Selected the text and clicked the Insert Hyperlink button in Expression Web.

 6. Added a hyperlink to moreinfo.htm in the root folder of the site.

 7. Clicked outside that hyperlink and got the error.

 If you provide your testers with examples of what you expect, you’ll get better information from them.

 It’s also important that you understand a tester’s expectation compared with what was experienced

when encountering a problem. Not all problems that testers encounter are actually bugs. When a

tester encounters a problem, your add-in may be operating exactly

the way you designed it, but your design may not be what the tes-

ter expects. For that reason, I like to have testers include steps that

were performed, what was expected, and what actually happened.
 Once you are able to reproduce a problem, you can then debug it

and fix it. Let’s review some of the tools available for debugging

add-ins.

 Debugging Add-ins Using Expression Web
 Debugging is the process of identifying and fixing problems in software. You can debug your add-ins

from within Expression Web using a couple of different tools: the Extensibility Tester and debug con-

soles.

 The Extensibility Tester
 The Extensibility Tester is an add-in developed by Microsoft for testing the JavaScript API. Using

the Extensibility Tester, you can test JavaScript code easily outside your add-in project. For exam-

ple, suppose your add-in needs to get the path of the file currently open in Expression Web, but you

aren’t sure whether you want to use xweb.document.filename or xweb.document.location .

 tip
 No amount of testing can identify
all software bugs. Even simple
add-ins are likely to be released
with some undiscovered bugs.

39_9780789749192_ch38.indd 69139_9780789749192_ch38.indd 691 5/31/12 10:31 AM5/31/12 10:31 AM

Packaging, Testing, and Debugging Add-ins692

8

P
A

R
T

Using the Extensibility Tester, you can evaluate each of these to determine which property is appro-

priate for your particular situation.

 You can download the Extensibility Tester from http://gallery.expression.microsoft.com/en-us/

ExtensibilityTester . After you download and install it, select Panels, Extensibility Tester to open it.

The Extensibility Tester is divided into four windows:

 • Input— Expressions to evaluate are added here. To evaluate an expression, click the Evaluate

button.

 • Output— If no error occurs when evaluating the expression, the result is displayed here.

 • Error— If an error occurs when evaluating the expression, the error is displayed here.

 • Events— Displays events in real-time.

 ➥ For more information on events, see Chapter 39 , “Expression Web 4 JavaScript API Reference.”

 In Figure 38.1 the expression xweb.document.filename is being evaluated. Because a file is not

currently open in Expression Web, “Object required” is displayed in the Error window. An “Object

required” error means that the JavaScript expression refers to an object that doesn’t exist. In this

case, the xweb.document object doesn’t exist because a file isn’t open in Expression Web.

 Figure 38.1
 The Extensibility Tester add-
in makes it possible to test
JavaScript expressions easily.

39_9780789749192_ch38.indd 69239_9780789749192_ch38.indd 692 5/31/12 10:31 AM5/31/12 10:31 AM

693Testing and Debugging Add-ins

38

C
H

A
P

T
E

R

 In some cases, the output you get from the Extensibility Tester may not be sufficient to resolve a

problem. For example, in Figure 38.2 , the following code is being evaluated:

 xweb.document.getElementsByTagName(“div”)

 The Output window displays the value Microsoft.Expression.Web.AddIns.JavaScript.

Interop.BridgeHtmlElement four times. (The BridgeHtmlElement object is an internal object

that Expression Web uses to identify an HTML element.) If I want to find out additional information

about a particular div , I need to change my input to refer to a particular element. The

getElementsByTagName method returns a zero-based array of elements, so I can use the following

code to get a reference to the first div on the page:

 xweb.document.getElementsByTagName(“div”)[0]

 Figure 38.3 shows the output obtained when evaluating the

 innerHTML property of the first div on the page.

 Figure 38.2
 The output from the
Extensibility Tester isn’t
always as helpful as you might
want it to be.

 tip
 The Extensibility Tester is a
great way to experiment with the
JavaScript API and learn more
about how to develop add-ins.

39_9780789749192_ch38.indd 69339_9780789749192_ch38.indd 693 5/31/12 10:31 AM5/31/12 10:31 AM

Packaging, Testing, and Debugging Add-ins694

8

P
A

R
T

 Debug Consoles
 If your add-in is in developer mode, you can use the debug con-

sole to aid in debugging your add-in. To access the debug con-

sole for your add-in, select it from the Panels menu in Expression

Web. The menu item for your add-in’s debug console will be

named using the name of your add-in’s folder. Therefore, if your

add-in is installed into the C:\Users\jim\AppData\Roaming\

Microsoft\Expression\Web 4\Addins\MyAddin folder, the

debug console can be opened by selecting Panels, MyAddin (con-

sole).
 The debug console displays some error information automatically.

For example, if your add-in’s manifest contains errors, the debug

console may display helpful information about the error. However,

you can also use the xweb.developer object to write directly to

the debug console.

 Figure 38.3
 By using a more specific
input string, I am able to
get useful information
about a particular div .

 tip
 As discussed in Chapter 36 ,
“Expression Web 4 Add-in
Basics,” to specify that an add-in
run in developer mode, set the
 developer attribute in the mani-
fest’s addin element to yes .

 tip
 If an error is encountered in your
manifest (and when some other
errors occur), Expression Web
creates a file called errors.txt
in the root of your site that con-
tains the error message.

39_9780789749192_ch38.indd 69439_9780789749192_ch38.indd 694 5/31/12 10:31 AM5/31/12 10:31 AM

695Testing and Debugging Add-ins

38

C
H

A
P

T
E

R

 The xweb.developer object has two methods that can be used to write content to the debug con-

sole:

 • xweb.developer.write(string) — Displays the value passed as a string in the debug console.

The string value can either be an explicit string or an expression that evaluates to a string.

 • xweb.developer.writeLine(string) — Equivalent to the write method except that writeLine

includes a carriage return at the end of the string so that each string appears on a new line.

 Consider the following code snippet:

 var loc = xweb.document.location;

 var linkDiv = xweb.document.getElementById(“link”);

 linkDiv.innerHTML = “Click Here”;

 Suppose that when this code runs, the hyperlink created within the div points to a URL that’s not

what I expect. By adding a call to xweb.developer.write , you can easily determine the value of

 loc.href before you use it in your code. Here’s the same code with an additional line that writes

the value of loc.href to the debug console.

 var loc = xweb.document.location;

 xweb.developer.writeLine(“loc.href = “ + loc.href);

 var linkDiv = xweb.document.getElementById(“link”);

 linkDiv.innerHTML = “Click Here”;

 Figure 38.4 shows the contents of the debug console when this code is run.

 Figure 38.4
 The debug console displaying the value of
 loc.href .

 Debugging Add-ins Using Visual Studio
 The debug console and Extensibility Tester are nice tools for trou-

bleshooting add-ins, but if you really want a full-featured debug-

ger, Visual Studio is your best choice.
 To debug your add-in in Visual Studio, follow these steps:

 1. Open Internet Explorer and select Tools, Internet Options.

 2. Click the Advanced tab.

 3. Uncheck Disable Script Debugging (Internet Explorer).

 tip
 To clear the contents of the
debug console, close and reopen
Expression Web.

39_9780789749192_ch38.indd 69539_9780789749192_ch38.indd 695 5/31/12 10:31 AM5/31/12 10:31 AM

Packaging, Testing, and Debugging Add-ins696

8

P
A

R
T

 4. Uncheck Disable Script Debugging (Other). Your Internet

Options dialog should look like the one shown in Figure 38.5 .

 5. Click OK.

 6. Ensure that all panels and dialogs for your add-in are closed

and close Expression Web.

 7. Launch Visual Studio and open the file that contains the script

you want to debug.

 8. Right-click on the line where you want a breakpoint and select Breakpoint, Insert Breakpoint.

 9. Launch Expression Web, but do not open your add-in’s panel or dialog box.

 10. Switch back to Visual Studio and select Debug, Attach to Process.

 11. Locate ExpressionWeb.exe in the Available Processes window and make sure that Script appears

in the Type column as shown in Figure 38.6 . If it does, proceed to step 15.

 12. If Script does not appear in the Type column, click the Select button.

 13. Select the Debug These Code Types radio button and check the Script check box.

 14. Click OK.

 15. Select ExpressionWeb.exe from the Available Processes list

and click the Attach button.

 16. Switch back to Expression Web and access your add-in.
 At this point, Visual Studio should break into the process when

your breakpoint is hit and you’ll have access to all of the debug-

ging tools available in Visual Studio.
 Using this method, you can set a breakpoint and debug from that

point. However, you can also use Visual Studio to debug unex-

pected errors that may occur while testing your add-in.

 Once you have script debugging enabled in Internet Explorer,

when a script error is encountered, you are asked whether you

want to debug the file containing the script as shown in Figure

 38.7 . If you click Yes, the Visual Studio Just-In-Time Debugger

dialog displays and you can choose a debugger as shown in

 Figure 38.8 . Choose New Instance of Visual Studio 2010 and click

Yes to debug your add-in. (Your version of Visual Studio may dif-

fer.)

 note
 Debugging add-ins in Expression
Web requires a full version of
Visual Studio. You cannot debug
Expression Web add-ins with any
of the Express editions.

 note
 Expression Web add-ins actually
run inside an Internet Explorer
control. That’s why you need to
ensure that script debugging
is enabled in Internet Explorer
before you can debug your add-
ins in Visual Studio.

 note
 Thanks to John Dixon on the
Expression Web product team
for documenting details on how
to do this on his blog. You can
read John’s blog post at http://
blogs.msdn.com/b/jdixon/
archive/2010/09/02/debugging-
javascript-add-ins-within-expres-
sion-web-4.aspx .

39_9780789749192_ch38.indd 69639_9780789749192_ch38.indd 696 5/31/12 10:31 AM5/31/12 10:31 AM

697Testing and Debugging Add-ins

38

C
H

A
P

T
E

R

 Figure 38.5
 You need to uncheck both Disable Script Debugging
check boxes in Internet Explorer before you can debug
your add-in.

 Figure 38.6
 Make sure that
Visual Studio is
configured to
debug scripts.

39_9780789749192_ch38.indd 69739_9780789749192_ch38.indd 697 5/31/12 10:31 AM5/31/12 10:31 AM

Packaging, Testing, and Debugging Add-ins698

8

P
A

R
T

 When Visual Studio launches, it automatically attaches the

debugger to Expression Web, and the script error is displayed as

shown in Figure 38.9 . Click Break and Visual Studio breaks at the

point where the error occurred.

 Figure 38.7
 Internet Explorer displays a script error dialog when
script debugging is enabled.

 Figure 38.8
 The Visual Studio JIT debugger can debug scripts that gen-
erate errors.

 note
 You can read details on all of
Visual Studio’s debugging tools
at http://msdn.microsoft.com/
en-us/library/sc65sadd.aspx .

39_9780789749192_ch38.indd 69839_9780789749192_ch38.indd 698 5/31/12 10:31 AM5/31/12 10:31 AM

699Summary

38

C
H

A
P

T
E

R

 Summary
 In this chapter, you familiarized yourself with the tools available for troubleshooting and debug-

ging your add-ins. You now have all the skills necessary for developing and debugging add-ins in

Expression Web. However, we’ve only touched on the capabilities of the JavaScript API.

 In the next chapter, you’ll find a complete reference on the Expression Web 4 JavaScript API. The

API reference is designed to be a valuable tool for looking up information on the API while you’re

developing add-ins. However, it’s also helpful to read the reference so that you can familiarize your-

self with all the capabilities of the JavaScript API.

 Figure 38.9
 The script error is displayed within Visual
Studio. Clicking Break allows you to debug
it.

 Perpetual Script Errors

 Once you enable script debugging in Internet Explorer, an error message is displayed each time
a script error is encountered. If you’re developing a panel for your add-in and you have an error
in your script that runs when the panel is activated or deactivated, it’s possible that a script
error will be displayed each time you open a page or close a page. If an error occurs when you
are closing a page and you click No to the prompt asking whether you want to debug the error,
Expression Web will not close the page.

 To correct such a situation, you need to first correct the script error that is causing your prob-
lem. Once you do that and you save the file containing the script, right-click on your panel and
select Refresh. Your panel then runs the corrected script and you should be able to open and
close pages without an error message.

 You should also know that when script debugging is enabled, you may see errors occur on
many sites as you browse the Internet. For that reason, it’s a good idea to disable script debug-
ging again after you’ve finished debugging your Expression Web add-in.

39_9780789749192_ch38.indd 69939_9780789749192_ch38.indd 699 5/31/12 10:31 AM5/31/12 10:31 AM

39_9780789749192_ch38.indd 70039_9780789749192_ch38.indd 700 5/31/12 10:31 AM5/31/12 10:31 AM

