
 37

 CREATING AND MANIPULATING
AN ADD-IN USER INTERFACE

 Planning an Add-in
 In Chapter 36 , “Expression Web 4 Add-in Basics,” you learned the details

of the Expression Web add-in manifest. You learned how to create panels,

menu items, and toolbar items. In this chapter, you’ll put that knowledge

to use and create an add-in with all of those elements.
 In this chapter, you’ll create an add-in that shows you various properties

about the document currently open in

Expression Web. Information is dis-

played in a panel, but the add-in also

creates a menu option on the Tools

menu that opens an options dialog for

setting options for the add-in.

 You develop this add-in in five steps.

 1. Create the manifest with the Add-in Builder.

 2. Create the user interface for the main interface as a panel.

 3. Create the user interface for the options dialog.

 4. Develop the JavaScript code for the panel.

 5. Develop the JavaScript code for the options dialog.

 The first step in creating any add-in is to create the manifest.

 note
 The add-in you create in this
chapter is designed for use with
disk-based sites only.

38_9780789749192_ch37.indd 66138_9780789749192_ch37.indd 661 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface662

8

P
A

R
T

 Creating the Manifest with the Add-in Builder
 The easiest way to create an add-in manifest is to use the Add-in Builder, an add-in that Microsoft

wrote for the purpose of creating add-ins easily without messing with XML code.

 Download the Add-in Builder from http://gallery.expression.microsoft.com/en-us/AddinBuilder . The

file that you download is a .xadd file, and it doesn’t matter where you save it. Once you’ve success-

fully downloaded the Add-in Builder, follow these steps to install it:

 1. Launch Expression Web.

 2. Select Tools, Add-Ins.

 3. Click the Install button.

 4. Browse to the location where you saved the AddinBuilder.xadd file, select it, and click Open.

 5. In the Add-in Install Complete dialog, click Yes to activate the add-in.

 What Happens When an Add-in Is Installed?

 In Chapter 36 , I explained that a .xadd file is simply a Zip file with a .xadd file extension.
When you install an add-in, Expression Web unzips the .xadd file and places its contents in
the %userprofile%\AppData\Roaming\Microsoft\Expression\Web 4\Addins folder.
Expression Web looks for an add-in manifest in any folder within this folder, and when it finds
one, it uses it to load the add-in. You can actually install an add-in manually by simply renam-
ing the .xadd extension to .zip and then unzipping the file into the Addins folder. No other
action is necessary to install an add-in.

 When you install an add-in using the Add-Ins menu in Expression Web, Expression Web also
adds a text file with the name installedByXWeb.txt . When this file is in the add-in’s folder,
Expression Web enables the Remove button in the Manage Add-ins dialog. If you distribute
your add-in using some kind of automated installation method, make sure that you include a
text file called installedByXWeb.txt (the text file doesn’t need to include any text content)
in the add-in’s folder so that users can remove your add-in from the Manage Add-ins dialog in
Expression Web.

 The add-in you will create has a panel and a dialog. The dialog is launched using a menu item on

the Tools menu or a toolbar button on the Common toolbar. Let’s use the Add-in Builder to create a

manifest for the add-in.

 Creating the Manifest
 To create a manifest with the Add-in Builder, launch Expression Web. If a site is already open in

Expression Web, first close it. The Add-in Builder isn’t designed to work with an existing site.

Instead, it creates a new site in the Add-ins folder that contains the files necessary for your add-in.

38_9780789749192_ch37.indd 66238_9780789749192_ch37.indd 662 5/31/12 10:32 AM5/31/12 10:32 AM

663Creating the Manifest with the Add-in Builder

37

C
H

A
P

T
E

R

 Select Tools, Add-in Builder to launch the Add-in Builder. The top portion of the Add-in Builder dia-

log contains general add-in settings such as Name, Description, and Author. The bottom portion of

the dialog contains three tabs: Panels, Dialogs, and Assemblies.

 In this section, I cover the Panels and Dialogs tabs. The Assemblies tab is used to load a managed

assembly so that you can access it using JavaScript. I cover doing that later.

 ➥ For more information on accessing a managed assembly using JavaScript, see “Accessing

Managed Classes from JavaScript,” p. 682, later in this chapter.

 Start by filling in the general information about your add-in.

 1. Enter Page Info in the Name box.

 2. Enter a description in the Description box. The description

should be brief.

 3. Enter your name in the Author box.

 4. Enter 1.0 in the Version box.

 5. Check the Developer Mode box.
 The Add-in Builder dialog should now look like Figure 37.1 .

 tip
 The Add-in Builder highlights
fields in red when they are
required.

 Figure 37.1
 The Add-in Builder
with the general infor-
mation for our add-in
filled in.

38_9780789749192_ch37.indd 66338_9780789749192_ch37.indd 663 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface664

8

P
A

R
T

 Now you need to add the panel that serves as the main interface

for your add-in. To do that, follow these steps:

 1. Make sure that the Panels tab is selected and click Add Panel.

 2. Enter Page Info in the Name box.

 3. Enter panel.htm in the Source box.

 4. Enter MainUI in the Id box.

 5. Check the HTML-DOM check box.

 6. Enter ActivatePanel() in the Activate box.

 7. Enter ClearPanel() in the Deactivate box.

 The Define a Panel dialog should look like the one shown in Figure 37.2 . Click Insert to add the

panel to your manifest.

 caution
 You can’t edit an add-in with the
Add-in Builder, so don’t click
the Create Add-in button until
you have finished entering all of
the information for your add-in.
If you do, you’ll have to manu-
ally edit the manifest to add any
additional features such as a
panel, a dialog, or menu or tool-
bar items.

 Figure 37.2
 The completed Define a Panel dialog with all the proper-
ties entered for the main interface.

 Don’t worry about the fact that the panel.htm file doesn’t cur-

rently exist. When you click Create Add-in, the Add-in Builder

automatically creates a blank HTML file named panel.htm .

The ActivatePanel and ClearPanel entries you made are

JavaScript functions that you’ll write later in this chapter.
 Now you need to add a dialog for the options dialog so that users

can configure your add-in. To do that, follow these steps:

 1. Click the Dialogs tab and click Add Dialog.

 2. Enter Page Info Options in the Title box.

 3. Enter options.htm in the Source box.

 tip
 Remember that panels automati-
cally have a menu item added to
the Panels menu in Expression
Web. Therefore, there’s no need
to create a menu item for a
panel, and in fact, the Expression
Web manifest doesn’t even pro-
vide a means for doing so.

38_9780789749192_ch37.indd 66438_9780789749192_ch37.indd 664 5/31/12 10:32 AM5/31/12 10:32 AM

665Creating the Manifest with the Add-in Builder

37

C
H

A
P

T
E

R

 4. Enter pageInfoOptions in the Id box.

 5. Enter 125 in the Height box.

 6. Enter 300 in the Width box.

 7. Leave all of the File Type check boxes unchecked.
 The Define a Modal Dialog dialog should now look like the one

shown in Figure 37.3 .

 tip
 By leaving all of the File Type
check boxes unchecked, the
Page Info Options menu item will
always be available to the user.

 Figure 37.3
 The Define a Modal Dialog dialog now contains the settings for
the options dialog.

 Finally, you need to create the menu item for the options dialog.

 1. Click the Add Menu Item button.

 2. Select &Tools from the Parent Menu drop-down.

 3. Leave the Before box empty so that the menu item will be placed at the bottom of the Tools

menu.

 4. Enter _Page Info Options... in the Label box.

 5. Enter Page Info Options in the Tooltip box.

 The Define a Menu dialog should now look like the one shown in Figure 37.4 . Click the Create but-

ton to add the menu item.
 Now click Insert to add the dialog to the manifest. Once you’ve done that, click the Create Add-in

button to create the manifest. When you do, the Add-in Builder creates a new site in the Add-ins

folder. That site contains all the files for your add-in as shown in Figure 37.5 .

38_9780789749192_ch37.indd 66538_9780789749192_ch37.indd 665 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface666

8

P
A

R
T

 At this point, close Expression Web and then launch it again.

Click on the File menu, and you should see your add-in’s menu

option at the bottom of the menu. Why is the menu item on the

File menu when you chose to place it on the Tools menu in the

Add-in Builder? There’s a bug in the Add-in Builder that causes

it to always add menu items to the File menu regardless of which

menu you choose in the Parent Menu drop-down, and to fix that,

we need to edit the manifest.

 Figure 37.4
 The Define a Menu dialog with all the settings
for the menu item.

 Figure 37.5
 The Add-in
Builder creates
all the files
necessary for
your add-in.

 tip
 If you select Tools, Add-Ins,
you see your add-in listed.
However, the Remove button
is not enabled for your add-in.
To enable the Remove button,
create an empty text file called
 installedByXWeb.txt in your
add-in’s folder.

38_9780789749192_ch37.indd 66638_9780789749192_ch37.indd 666 5/31/12 10:32 AM5/31/12 10:32 AM

667Creating the User Interfaces

37

C
H

A
P

T
E

R

 Editing the Manifest
 At this point, the Page Info site should be open in Expression Web. If it’s not, open it from %user-

profile%\AppData\Roaming\Microsoft\Expression\Web 4\Addins\Page Info . Double-click

on the manifest (addin.xml) to open it and look for the following line:

 <menuitem label=”_Page Info Options...” parent=”MENU_File” tooltip=”Page Info

Options” />

 The parent attribute identifies the menu on which the menu item should appear. The parent attri-

bute is currently MENU_File . Change it to MENU_Tools .

 We also need to add the attributes to specify the size of the Options dialog. We entered these prop-

erties in the Add-in Builder, but there’s another bug in the Add-in Builder that prevents them from

being added to the manifest.

 Locate the following line in the manifest:

 <command id=”pageInfoOptions”

 onclick=”xweb.application.showModalDialog(‘options.htm’,

 ‘Page Info Options’);”>

 Change this line to read as follows:

 <command id=”pageInfoOptions”

 onclick=”xweb.application.showModalDialog(‘options.htm’,

 ‘Page Info Options’, ‘dialogHeight:125;dialogWidth:300;scroll:no’);”>

 After making that change, close and save the manifest. Close

Expression Web and launch it again. When it reopens, you see that

the menu item now correctly appears on the Tools menu where it

should be, and if you select the Page Info Options menu item, it

launches the Page Info Options dialog.
 At this point, both the Page Info panel and the Page Info Options

dialog are blank. In the next section, I show you how to create the

user interface for the panel and the dialog.

 Creating the User Interfaces
 Add-in user interfaces are built using HTML elements. You can use any of the tools in the HTML

section of the toolbox when creating your user interfaces. You can even use multimedia components

in your user interface.

 In this section, you’ll create the user interface for the Page Info panel and for the Page Info Options

dialog.

 note
 It’s important to realize that
when you are developing an add-
in in Expression Web, you typi-
cally want to open the add-in’s
folder as a site so that you can
work on the site. That’s why the
Add-in Builder opens the add-
in’s folder as a site.

38_9780789749192_ch37.indd 66738_9780789749192_ch37.indd 667 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface668

8

P
A

R
T

 Creating a Custom Page Size for Panels
 As I mentioned in the Panels section in Chapter 36 , panels are a suitable interface for your add-in

as long as the interface can fit within a space of 275 pixels in width. To better visualize my panel’s

interface, I like to create a custom page size in Expression Web of 275 pixels by 600 pixels. I can

then use this custom page size to easily design my panel’s interface.

 To create a custom page size for a panel, follow these steps:

 1. Make sure that a page is open in Design view in Expression Web.

 2. Select View, Page Size, Modify Page Sizes.

 3. In the Modify Page Sizes dialog, click the Add button.

 4. Enter 275 in the Width box and 600 in the Height box.

 5. Enter Panel Add-In in the Description box.

 6. Click OK to add the new page size.

 7. Click OK to return to Design view in Expression Web.

 You can now select the new page size using the View, Page Size menu in Expression Web or by

clicking on the page size indicator on the Status Bar as shown in Figure 37.6 .

 Figure 37.6
 Creating a custom
page size helps
you to better visu-
alize your panel’s
interface.

38_9780789749192_ch37.indd 66838_9780789749192_ch37.indd 668 5/31/12 10:32 AM5/31/12 10:32 AM

669Creating the User Interfaces

37

C
H

A
P

T
E

R

 Creating the Panel’s Interface
 The user interface for panels and dialog boxes is created using HTML. However, creating an add-in

interface presents challenges that you often don’t encounter when designing web pages. Unlike

pages of a website, panels and dialog boxes are designed using a single page. Therefore, if you

need to design an interface that has multiple states, you need to take that into account as you

design your interface.

 The panel interface for the Page Info add-in has three states:

 • State 1— No pages are open in Expression Web.

 • State 2— An unsaved page is open in Expression Web.

 • State 3— A saved page is open in Expression Web.

 Depending on which state exists, a different interface needs to be displayed to the user.

 As a general rule, I use a <div> to define each state of my add-in. I can then use CSS rules to set

the display property of each <div> so that I can control which state is visible to the user. However,

for the Panel Info panel, I used two <div> elements, one for state 1 and 2 and a second for state 3.

 To create the interface for the panel, open panel.htm in Expression Web. Switch to Code View and

add the HTML code shown in Listing 37.1 .

 Listing 37.1 HTML Code for the Panel Interface

 <html>

 <head>

 <meta content=”en-us” http-equiv=”Content-Language”>

 <style type=”text/css”>

 p {

 font-size: .7em;

 font-family: Arial, Helvetica, sans-serif;

 color: #808080;

 }

 .centered {

 text-align: center;

 padding-top: 25px;

 }

 #pageInfo {

 overflow: hidden;

 }

 #panelHeader {

 background-color: #C0C0C0;

 }

 </style>

 </head>

38_9780789749192_ch37.indd 66938_9780789749192_ch37.indd 669 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface670

8

P
A

R
T

 <body>

 <div id=”blank” class=”centered”>

 <p>Open a page to display properties.</p>

 </div>

 <div id=”pageInfo”>

 <div id=”panelHeader”>

 <p style=”color: black”>

 Current Page:

 </p>

 </div>

 <p>

 Title:

 Created:

Modified:

 </p>

 <p>

 Size: bytes

 </p>

 <div id=”titleWarning”>

 <hr size=”1”>

 <p style=”color: black; margin-top: -4px”>

 <p style=”color: red; margin-top: -4px; background-color: white”>

 Title is undefined.

 </p>

 </div>

 </div>

 </body>

 </html>

 After adding this code to panel.htm , the page should look like

the one shown in Figure 37.7 .

 There are two top-level div elements in panel.htm , one with

an ID of “blank” and another with an ID of “pageInfo” . The

 “blank” div displays a message telling the user to open a page

to display properties in the panel while the “pageInfo” div

contains all of the page elements used to display page proper-

ties. Each property is identified by a span , and each span con-

tains an ID attribute so that I can set the text for the span using

JavaScript code.

 Save panel.htm and then select Panels, Page Info to see what the panel looks like in its current

state. Notice that both the “blank” div and the “panelInfo” div are visible as shown in Figure

 37.8 .

 note
 You may have noticed that
there’s no DOCTYPE specified
in panel.htm . You can specify
a DOCTYPE if you want to, but
since this page will only be
viewed from within a panel in
Expression Web, it’s not neces-
sary to use one.

38_9780789749192_ch37.indd 67038_9780789749192_ch37.indd 670 5/31/12 10:32 AM5/31/12 10:32 AM

671Creating the User Interfaces

37

C
H

A
P

T
E

R

 Figure 37.7
 The completed user interface for the
Page Info panel.

 Figure 37.8
 Both the blank and pageInfo div are visible at this point. We’ll fix that
soon with some JavaScript.

38_9780789749192_ch37.indd 67138_9780789749192_ch37.indd 671 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface672

8

P
A

R
T

 Creating the Options Dialog Interface
 The next step in creating the Page Info add-in is to create the interface for the Options dialog. The

Options dialog allows a user to specify whether to display a warning when a title isn’t defined for

the current page.

 Open options.htm , switch to Code View, and add the code in Listing 37.2 to the page.

 Listing 37.2 HTML Code for options.htm

 <html>

 <head>

 <style type=”text/css”>

 p {

 font-family: Arial, Helvetica, sans-serif;

 font-size: .75em;

 }

 input {

 font-family: Arial, Helvetica, sans-serif;

 font-size: .85em;

 }

 }

 </style>

 </head>

 <body onload=”SetCheckboxByAppSettings();”>

 <p>

 <input name=”WarnCheckbox” type=”checkbox” checked=”true”>

 Display warning when <title> not detected.

 </p>

 <p style=”text-align: right;”>

 <input name=”OK” type=”button” value=”OK” style=”width: 60px”

 onclick=”SetWarningOption();”>

 </p>

 </body>

 </html>

 Notice that the OK button is configured to call the SetWarningOption JavaScript func-

tion when it’s clicked. You’ll add that function in the next section. You’ll also add the

 SetCheckboxByAppSettings function that is called in the onload event of the page.

 Save options.htm and close it. You can now select Tools, Page Info Options, and the Page Info

Options dialog loads. The Page Info Options dialog is shown in Figure 37.9 .

 Figure 37.9
 The Page Info Options dialog.

38_9780789749192_ch37.indd 67238_9780789749192_ch37.indd 672 5/31/12 10:32 AM5/31/12 10:32 AM

673Adding Functionality with JavaScript

37

C
H

A
P

T
E

R

 Now it’s time to write some JavaScript code to implement the func-

tionality for our add-in.

 Adding Functionality with
JavaScript

 There are two facets to adding functionality to an add-in with

JavaScript. One is writing code that interacts with elements in your

user interface, typically to change the interface based on certain

conditions. The other facet is writing code that interacts with the

Expression Web interface itself.

 To interact with elements in your user interface, the window and

 document objects from the browser’s document object model

(DOM) are used. The window object refers to the window for your

interface, a panel or a dialog box depending on the type of inter-

face you’re using. The document object refers to the page dis-

played within the window.
 To interact with the Expression Web interface, Microsoft developed

a completely new application programming interface (API) that

makes it easy to interact with the Expression Web application itself

and with the document and site that is open within Expression

Web.

 ➥ For a complete reference on the Expression Web JavaScript

API for developing add-ins, see Chapter 39 , “Expression Web

4 JavaScript API Reference.”
 Let’s add some JavaScript code to the add-in’s pages that controls

the functionality of the add-in.

 JavaScript for panel.htm
 Let’s review the <panel> element from the Page Info add-in mani-

fest.

 <panel src=”panel.htm” id=”MainUI” title=”Page Info” filetype=”HTML-DOM”

 activate=”ActivatePanel()” deactivate=”ClearPanel()” />

 Remember from the Chapter 36 that the activate attribute speci-

fies a JavaScript function that runs when the panel is activated,

and the deactivate attribute specifies a JavaScript function that

runs with the panel is deactivated. In this section, you’ll write the

 ActivatePanel and ClearPanel JavaScript functions. I cover the

 ClearPanel function first because it’s a simpler function.

 note
 If you click a button in the
Page Info Options dialog, you’ll
get a script error because the
JavaScript code that runs when
the button is clicked hasn’t been
added to the page yet.

 tip
 If you’ve ever written JavaScript
when designing a site, you’ve
certainly used the window and
document objects before. The
same techniques used when
writing JavaScript code for a
site are used when writing code
to interact with an add-in user
interface.

 note
 Throughout the rest of this chap-
ter, I often refer you to Chapter
 39 for more information on the
JavaScript API in Expression
Web. This chapter is meant to
familiarize you with the concepts
needed to develop add-ins and is
not meant as a reference for the
JavaScript functions.

 tip
 The JavaScript functions for each
page can be placed anywhere on
the page within a script block. If
you need to see an example of the
scripts placed in the page, you can
download the completed add-in
from www.informit.com/register .

38_9780789749192_ch37.indd 67338_9780789749192_ch37.indd 673 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface674

8

P
A

R
T

 The ClearPanel function changes the panel’s interface to display an informational message

asking the user to open a page to view page information. Listing 37.3 contains the code for the

 ClearPanel function.

 Listing 37.3 The ClearPanel Function

 function ClearPanel() {

 var blank = window.document.getElementById(“blank”);

 var ui = window.document.getElementById(“pageInfo”);

 var titleWarning = window.document.getElementById(“titleWarning”);

 blank.innerHTML = “<p>Open a web page to display properties.</p>”;

 blank.style.display = “block”;

 ui.style.display = “none”;

 titleWarning.style.display = “none”;

 }

 The first three lines of this function create three variables. Each

variable refers to a particular div in panel.htm . To get a ref-

erence to a particular div , the ClearPanel function uses the

 getElementById JavaScript function and uses the ID of the div

as an argument to that function. Consider the following div from

 panel.htm :

 <div id=”blank” class=”centered”>

 To obtain a reference to this div in your JavaScript code, you

would use the following code:

 window.document.getElementById(“blank”);

 The next line of code sets the innerHTML property of the

 “blank” div so that it displays an information message telling

the user to open a web page to display properties. Here is that line of code:

 blank.innerHTML = “<p>Open a web page to display properties.</p>”;

 I’ve used the innerHTML property because the value I’m using contains HTML tags. The innerHTML

property adds the HTML code that I’ve specified inside the div referenced by “blank” . After set-

ting the innerHTML property, the code for the div is as follows:

 <div id=”blank” class=”centered”>

 <p>Open a web page to display properties.</p>

 </div>

 The next three lines set the CSS display property for the “blank” div , the “ui” div , and the

 “titleWarning” div .

 note
 While developing this add-
in, I show you the basics of
interacting with web pages
using JavaScript. Although a
complete discussion on using
JavaScript functions to interact
with the DOM is outside the
scope of this book, a reference
is available at http://msdn.
microsoft.com/en-us/library/
ms533050(v=VS.85).aspx .

38_9780789749192_ch37.indd 67438_9780789749192_ch37.indd 674 5/31/12 10:32 AM5/31/12 10:32 AM

675Adding Functionality with JavaScript

37

C
H

A
P

T
E

R

 The “blank” div contains a message that we want displayed when a page isn’t open. The “ui”

div contains the user interface used to display page information. When there isn’t a page open in

Expression Web, we want the “blank” div to be displayed, and we want the “ui” div to be hid-

den. By setting the CSS display property of the “blank” div to block and the display property

of the “ui” div to none , the panel is displayed correctly to the user.

 The “titleWarning” div displays a warning message to the user when there isn’t a title defined

for the page that is open in Expression Web. The user can control whether to display this warning

using the Options dialog.

 CSS Visibility Versus Display

 You might be wondering why I chose to use the CSS display property rather than the CSS
 visibility property to control the visibility of each div . For example, I could have used the
following code to hide the “ui” div .

 ui.style.visibility = “hidden”;

 When you hide an element using the visibility property, the element still takes up space
on the page even though it’s not visible. For example, if the “ui” div were 100 pixels in
height, setting the visibility property to hidden would result in a 100 pixel high blank spot.
However, if you use the display property instead, the element is removed completely from the
page.

 Because of the way I’ve designed the panel’s interface, this distinction isn’t important.
However, if I had placed the “blank” div under the “ui” div , setting the visibility prop-
erty of the “ui” div to hidden would result in a large unwanted empty area above the “blank”
div .

 There are times when it’s preferable to use the visibility property. If you want to hide a par-
ticular element that appears inline with other elements and you don’t want the other elements
to shift position, use the visibility property.

 The ActivatePanel function is called when a page is opened that matches the type of file specified

in the filetype attribute in the manifest. Listing 37.4 shows the code for the ActivatePanel func-

tion. (Line numbers are included for reference only.)

 Listing 37.4 The ActivatePanel Function

 1 function ActivatePanel() {

 2 var loc = xweb.document.location;

 3 if (loc.protocol == “unsaved:”)

 4 {

 5 ClearPanel();

 6 window.document.getElementById(“blank”).innerHTML =

 “<p>Save this page to display properties.</p>”;

 7 }

 8 else

38_9780789749192_ch37.indd 67538_9780789749192_ch37.indd 675 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface676

8

P
A

R
T

 9 {

 10 var fileName = xweb.document.name;

 11 var pathFromRoot = xweb.document.pathFromSiteRoot;

 12 var fileUrl;

 13 var blank = window.document.getElementById(“blank”);

 14 var ui = window.document.getElementById(“pageInfo”);

 15 var title = xweb.document.getElementsByTagName(“title”)[0];

 16

 17 if (pathFromRoot == undefined || pathFromRoot == “”) {

 18 fileUrl = fileName;

 19 } else {

 20 fileUrl = pathFromRoot + “/” + fileName;

 21 }

 22 blank.style.display = “none”;

 23 ui.style.display = “block”;

 24

 25 SetLabel(“pageUrl”, fileUrl);

 26 SetLabel(“pageCreated”, xweb.file.getCreationDate(“site:” + fileUrl));

 27 SetLabel(“pageModified”, xweb.file.getModificationDate(“site:” +

 fileUrl));

 28 SetLabel(“fileSize”, xweb.file.getSize(“site:” + fileUrl));

 29

 30 if (title != undefined) {

 31 SetLabel(“pageTitle”, title.innerText);

 32 } else {

 33 var ShowWarning = xweb.application.settings.read

 (“WarnOnMissingTitle”);

 34 if (ShowWarning == undefined || ShowWarning == “true”)

 35 {

 36 titleWarning.style.display = “block”;

 37 } else {

 38 titleWarning.style.display = “none”;

 39 }

 40 window.document.getElementById(“pageTitle”).innerHTML =

 “[No Title] <a href=\”javascript:void()\”onclick=

 \”SetTitle();\”>Click to set title.”;

 41 }

 42 }

 43 }

 This code is a bit more complex than the code for the ClearPanel function. Some of the code is

similar to what you saw in the ClearPanel function, but the ActivatePanel function also contains

code that uses the Expression Web JavaScript API. Let’s look at this function in detail.

 In Line 2, a variable called loc is declared and set to xweb.document.location . xweb is the root

namespace of the Expression Web JavaScript API. Because object names aren’t guaranteed to be

unique, it’s necessary to group objects within a logical container. That logical container is called a

 namespace , and the highest level namespace is called a root namespace .

38_9780789749192_ch37.indd 67638_9780789749192_ch37.indd 676 5/31/12 10:32 AM5/31/12 10:32 AM

677Adding Functionality with JavaScript

37

C
H

A
P

T
E

R

 Had I not specified the xweb namespace in Line 2, Expression Web would infer that the document

object refers to window.document in the browser’s DOM. Because window.document.loca-

tion returns the path to the file displayed in the panel and not the file open in Expression Web,

the code would not have worked as expected. By using the xweb

namespace, I’m letting Expression Web know that “ document”

refers to the document object within the Expression Web API and

not the browser’s DOM.
 The xweb.document.location property returns an

 IHTMLLocation object that contains information about the location

of the file open in Expression Web. The protocol member of the

 IHTMLLocation object contains a string that defines the protocol

of the open file. If the file has never been saved, the protocol will

be “unsaved:” and properties for the file won’t be available. In

that case, we want to let the user know to save the file to display

properties.

 Line 3 checks the protocol of the loc object. If it’s “unsaved:” , ClearPanel is called to clear any

existing information, and the “blank” div is changed to display a suitable message.

 The rest of the function (beginning with Line 10) is the code that runs when the protocol of the

open file is not “unsaved:” . This is the code that uses the Expression Web JavaScript API to obtain

properties about the current page and display them in the panel.

 Line 10 defines a variable called fileName and sets it to xweb.document.name . The xweb.docu-

ment.name property returns the name of the file open in Expression Web along with the file exten-

sion. The path to the file is not returned by xweb.document.name .

 Line 11 defines a variable called pathFromRoot and sets it to xweb.document.pathFromSiteRoot .

The pathFromSiteRoot property returns the relative path to the open file from the root of the site.

For example, if I open default.html from inside a folder called news , pathFromSiteRoot would

return news/ .

 Line 12 defines a variable called fileUrl with no value. We use this variable later to populate the

value we want to display for the current page name.

 Lines 13-15 get references to the “blank” div , the “pageInfo” div , and the title tag for the

page. The technique used to do so should be familiar to you at this point.

 Line 17 checks the value of pathFromRoot to determine whether the file that’s open is in a sub-

folder. If it isn’t, Line 18 sets the fileUrl variable to the value of fileName . Otherwise, fileUrl is

set to a concatenation of pathFromRoot and fileName in Line 20.

 Lines 22 and 23 set the CSS display property for the “blank” and “ui” div . The technique used

should be familiar to you.

 Lines 25-28 call the SetLabel JavaScript function. (We haven’t written this function yet.) The

 SetLabel function takes two arguments: the name of a page element and a value. It then locates

the page element passed to it and sets the innerText property of the element to the value that is

passed to the function. By incorporating this functionality into its own function, it’s more convenient

to reuse the functionality in other parts of the add-in. It also makes the add-in’s code easier to

 tip
 When writing add-in code, fol-
low this simple rule. If you
want to refer to the page that
contains your add-in’s interface,
use the window object. If you
want to refer to the page open
in Expression Web, always use
objects in the xweb namespace.

38_9780789749192_ch37.indd 67738_9780789749192_ch37.indd 677 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface678

8

P
A

R
T

maintain. If a change is necessary in the code that sets the labels,

the code only has to be changed in one place.
 Line 25 passes the value of the fileUrl variable to the

 SetLabel function.

 Lines 26, 27, and 28 use the xweb.file.getCreationDate ,

 xweb.file.getModificationDate , and xweb.file.getSize

functions to get information about the current file. Note that the

argument to these functions is “site:” followed by fileUrl . When you’re writing add-ins using

the JavaScript API, file paths that refer to files in the site open in Expression Web are preceded by

 site: , and file paths that refer to files in the add-in’s folder are preceded by addin: .

 ➥ For more information on the getCreationDate , getModificationDate , and getSize func-

tions, see Chapter 39 , “Expression Web 4 JavaScript API Reference.”

 Line 30 checks to see whether the title variable is defined. The title variable is set to the title

element on the page on Line 15. However, if the title element is missing from the page, the title

variable will be undefined. If the title variable is not undefined , SetLabel is called (Line 31)

and the innerText property of the title element is passed to it so that we can display the title in

the panel. If a title element isn’t defined, the add-in reads a setting called WarnOnMissingTitle

(Line 33) and uses that to determine whether to display the titleWarning element on the page in

Lines 34-39.

 ➥ For more information on using the xweb.application.settings.read function to read add-in set-

tings, see Chapter 39 , “Expression Web 4 JavaScript API Reference.”

 Finally, in Line 40, the innerHTML property of the pageTitle element is set to a value letting the

user know that no title exists on the page. A hyperlink is also added that calls the SetTitle func-

tion. We review the code for that function shortly.

 As you saw in the ActivatePanel function, the SetLabel function is used to set the text displayed

in page elements on the panel. The SetLabel function takes two arguments. The first is the ID of

the page element that is being modified, and the second is the value that should be displayed in

that element. Here is the code for the SetLabel function:

 function SetLabel(label, value) {

 window.document.getElementById(label).innerText = value;

 }

 This code should be familiar to you by now.

 The last function in panel.htm is the SetTitle function. Remember from Listing 37.4 that if a

title isn’t specified for the page, the Page Info add-in displays a hyperlink allowing the user to set a

title. When this link is clicked, the SetTitle function is called. Listing 37.5 shows the code for the

 SetTitle function.

 note
 We’ll write the code for the
 SetLabel function in the next
section.

38_9780789749192_ch37.indd 67838_9780789749192_ch37.indd 678 5/31/12 10:32 AM5/31/12 10:32 AM

679Adding Functionality with JavaScript

37

C
H

A
P

T
E

R

 Listing 37.5 The SetTitle Function

 function SetTitle() {

 var ret = xweb.application.showModalDialog(‘addin:settitle.htm’,

 ‘Set Page Title’,’dialogHeight:125;dialogWidth:300;scroll:no’);

 var title = xweb.document.getElementsByTagName(“title”)[0];

 if (ret)

 {

 // update title display

 SetLabel(“pageTitle”, title.innerText);

 }

 }

 This function uses the xweb.application.showModalDialog function to display a dialog that

prompts the user for a title for the page. The technique used here is one that you’ll likely use often

in your add-ins. The variable ret is set to the value returned by the dialog. (The return value is

actually set in the code contained within the setttile.htm page, and we look at that code next.) If

the value returned by the settitle.htm dialog is true, SetLabel is called to update the title that is

displayed in the panel.

 ➥ For more information on the xweb.application.showModalDialog function, see Chapter

 39 , “Expression Web 4 JavaScript API Reference.”

 JavaScript for options.htm
 The Options dialog contains two JavaScript functions: SetCheckboxByAppSettings and

 SetWarningOption . SetCheckboxByAppSettings sets the initial state of the check box (shown

previously in Figure 37.9) by reading an application setting. The following code listing shows the

JavaScript code for this function:

 function SetCheckboxByAppSettings()

 {

 var WarnCheckbox = window.document.getElementsByName(“WarnCheckbox”)[0];

 var ShowWarning = xweb.application.settings.read(“WarnOnMissingTitle”);

 if (ShowWarning == false) WarnCheckbox.checked = false;

 }

 The first line of this function gets a reference to the check box

control on the dialog. Because the HTML for the check box sets the

 name attribute to WarnCheckbox , the getElementsByName func-

tion is used to obtain a reference to it. Since the getElementsBy-

Name function returns an array of elements that match the name

passed to it, the code gets the first element returned by using the

 [0] index.

 The next line of code reads an application setting called

 WarnOnMissingTitle . (I’ll cover the details on reading and writing

 note
 The checked attribute of the
 input element that defines
the check box is set to true .
Therefore, the check box is
checked by default. However,
we need to read the application
setting so that the check box
reflects the setting as configured
by the user.

38_9780789749192_ch37.indd 67938_9780789749192_ch37.indd 679 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface680

8

P
A

R
T

application settings in Chapter 39 , “Expression Web 4 JavaScript API Reference.”) The next line sets

the checked property of the check box based on the value of the WarnOnMissingTitle setting.
 The WarnOnMissingTitle setting is set by the SetWarningOption function that is called when

the OK button is clicked. Here is the JavaScript code for that function:

 function SetWarningOption()

 {

 var WarnCheckbox = window.document.getElementsByName(“WarnCheckbox”)[0];

 xweb.application.settings.write(“WarnOnMissingTitle”, WarnCheckbox.checked);

 xweb.application.endDialog(true);

 }

 Just as with the SetCheckboxByAppSettings function, the first

line of SetWarningOption gets a reference to the WarnCheckbox

check box control. The next line sets the WarnOnMissingTitle

application setting based on whether the WarnCheckbox control

is checked. It then calls endDialog to close the dialog.

 The Set Page Title Dialog
 The Set Page Title dialog is called from the SetTitle function in panel.htm .

 The Set Page Title dialog is implemented in settitle.htm . Create a new page and save it as

settitle.htm . Once you’ve done that, switch to Code view and enter the code in Listing 37.6 . Line

numbers are for reference only.

 Listing 37.6 Code for the Set Page Title Dialog

 1 <html xmlns=”http://www.w3.org/1999/xhtml”>

 2 <head>

 3 <meta content=”text/html; charset=utf-8” http-equiv=”Content-Type” />

 4 <style type=”text/css”>

 5 p {

 6 font-family: Arial, Helvetica, sans-serif;

 7 font-size: .75em;

 8 }

 9 input {

 10 font-family: Arial, Helvetica, sans-serif;

 11 font-size: .85em;

 12 }

 13 </style>

 14 <script type=”text/javascript”>

 15

 16 function SetTitle() {

 17 var newTitle = window.document.getElementsByName(“title”)[0];

 18 var titleEle = xweb.document.getElementsByTagName(“title”)[0];

 19 var headEle = xweb.document.getElementsByTagName(“head”)[0];

 20

 note
 Application settings are stored in
the add-in’s folder in a file called
 user.config . For details on this
file and how Expression Web
stores settings, see the docu-
mentation on xweb.applica-
tion.settings in Chapter 39 .

38_9780789749192_ch37.indd 68038_9780789749192_ch37.indd 680 5/31/12 10:32 AM5/31/12 10:32 AM

681Adding Functionality with JavaScript

37

C
H

A
P

T
E

R

 21 if (titleEle == undefined) {

 22 headEle.innerHTML += “<title></title>”;

 23 titleEle = headEle.childNodes[headEle.childNodes.length -1];

 24 }

 25

 26 titleEle.innerText = newTitle.value;

 27 xweb.application.endDialog(true);

 28 }

 29

 30 function CancelDialog() {

 31 xweb.application.endDialog(false);

 32 }

 33

 34 </script>

 35 </head>

 36

 37 <body>

 38 <p>Enter title for page:

 39 <input name=”title” type=”text” style=”width: 95%” /></p>

 40 <p style=”text-align: right”>

 41 <input name=”OK” type=”button” value=”OK” style=”width: 60px”

 onclick=”SetTitle();” />

 42 <input name=”Cancel” type=”button” value=”Cancel”

 style=”width: 60px” onclick=”CancelDialog();” />

 43 </p>

 44 </body>

 45 </html>

 The HTML code for this page is simple. It contains a text box named title and two buttons.

The OK button calls the SetTitle function when it’s clicked, and the Cancel button calls the

 CancelDialog button when it’s clicked. (The OK button calls the SetTitle function defined in

 settitle.htm and not the SetTitle function defined in panel.htm .)

 If a user enters a title and clicks OK, SetTitle is called, and the title element of the page open

in Expression Web is updated to reflect the new title. If the user clicks Cancel, the dialog is closed

without any updates to the page.

 The SetTitle function begins at Line 16 in Listing 37.6 . Line 17

gets a reference to the title text box defined in settitle.htm .
 Line 18 gets a reference to the title element on the page open in

Expression Web. The title element may not even exist, and we’ll

check for that condition in Line 21.

 Line 19 gets a reference to the head element on the page. If there

isn’t a title element on the page, the add-in has to create one.

Having a reference to the head element allows the add-in to create

the title element in the correct place on the page.

 Line 21 checks to see whether titleEle is undefined. If titleEle is undefined, it means a title

element doesn’t exist on the page. A title element is added in Line 22 by adding <title></title>

 tip
 Remember that window.document
always refers to the document
displayed in the add-in’s panel
or dialog, and xweb.document
always refers to the document
open in Expression Web.

38_9780789749192_ch37.indd 68138_9780789749192_ch37.indd 681 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface682

8

P
A

R
T

to the current value of headEle.innerHTML . Once Line 22 is executed, the title element will be the

last child element inside the head element. Line 23 gets a reference to the last child element in the

 head element and assigns it to the titleEle variable.

 Line 26 assigns the value entered into the title text box to the title element, and Line 27 calls

 xweb.application.endDialog and passes an argument of true . Remember that the SetTitle

function in panel.htm checks for the return value from the call to xweb.application.

showModalDialog to know whether to update the title displayed in the panel. The return value of

 showModalDialog is set by the argument passed to endDialog .

 The CancelDialog function starts on Line 30. It’s implemented using one line of JavaScript on Line

31 that calls endDialog and passes an argument of false . This value is checked in the SetTitle

function in panel.htm . If the user clicks Cancel in the Set Page Title dialog, the code in panel.htm

knows that it’s not necessary to update the title displayed in the panel.

 You now have a completed add-in that displays several properties about the page that is open in

Expression Web. It can also warn a user when a title isn’t set for a page, and in such cases, it allows

the user to easily set a title. While this add-in may not be the most useful add-in, it has illustrated

several important concepts regarding add-ins in Expression Web. By building the Page Info add-in,

you’ve learned:

 • How to create an add-in manifest that defines a menu item, a

dialog, and a panel.

 • How to use JavaScript to manipulate an add-in’s user inter-

face.

 • How to use the new JavaScript API in Expression Web.

 • How to display dialogs and store application settings.

 The Page Info add-in used only a small fraction of the capability

provided by the JavaScript API. As you progress to the next chap-

ter, you’ll gain in-depth knowledge of the entire JavaScript API so

that you can build your own add-ins.

 As you build more complex add-ins, it’s likely that you’ll eventu-

ally want to add functionality that the JavaScript API doesn’t

provide. Fortunately, it’s possible to create a class using the .NET

Framework that adds additional functionality to an add-in. In the

next section, I’ show you how you can call a .NET Framework

class from JavaScript.

 Accessing Managed Classes from
JavaScript

 The functionality provided by the JavaScript API is sufficient for

many add-in developers. However, some add-ins require addi-

tional capabilities not available in the JavaScript API. In these

 tip
 If your add-in doesn’t work at
this point, you can find tips on
troubleshooting and debugging
it in Chapter 38 .

 note
 Classes built with the .NET
Framework are referred to as
 managed classes .

 note
 Thanks to John Dixon, a developer
on the Expression Web team, for
his assistance in detailing how
to call managed classes from
JavaScript add-ins. You can read
John’s blog post on the topic at
 http://blogs.msdn.com/b/jdixon/
archive/2010/08/09/calling-man-
aged-code-from-expression-web-4-
html-js-extensibility-add-ins.aspx .

38_9780789749192_ch37.indd 68238_9780789749192_ch37.indd 682 5/31/12 10:32 AM5/31/12 10:32 AM

683Accessing Managed Classes from JavaScript

37

C
H

A
P

T
E

R

cases, creating a managed class and calling that class from your

JavaScript add-in can add significant functionality.
 Let’s create a simple managed class that we can call from the

JavaScript API. You need a version of Visual Studio to complete

this exercise. If you don’t have a full version of Visual Studio, you

can download Visual C#2010 Express from http://www.microsoft.

com/express/Downloads/#2010-Visual-CS .

 Creating a Managed Class
 Follow these steps to create a managed class that you can call from JavaScript:

 1. Open Visual Studio (or Visual C# 2010 Express) and select File, New Project.

 2. In the Installed Templates pane, select Visual C#.

 3. If you’re using Visual Studio 2010, make sure that .NET Framework 4 is selected in the drop-

down at the top of the dialog.

 4. Select Class Library from the list of project templates.

 5. Enter the location where you want to create your project and enter ManagedClass in the Name

box as shown in Figure 37.10 .

 6. Click OK to create the class library project.

 note
 I’ve chosen C# as the language
used for the managed class
example because the vast major-
ity of add-in developers are C#
developers. The C# syntax is also
similar to JavaScript syntax.

 Figure 37.10
 The New
Project dialog
in Visual Studio
is used to cre-
ate a class
library that you
can call from
your JavaScript
add-in.

38_9780789749192_ch37.indd 68338_9780789749192_ch37.indd 683 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface684

8

P
A

R
T

 Once your class library project is created, the Class1.cs code

file is displayed. Change the name of your class from Class1 to

 AddinUtility by changing this code:

 public class Class1

 to this:

 public class AddinUtility

 Next, select File, Save Class1.cs As and save the file as

 AddinUtility.cs .

 To use your new class from a JavaScript add-in, add the following

code to the top of AddinUtility.cs .

 using System.Runtime.InteropServices;

 You then need to make your class visible to Expression Web. To do that, change your class declara-

tion from this:

 public class AddinUtility

 to this:

 [ComVisible(true)]

 public class AddinUtility

 Now you need to add a reference to the extensibility DLL so that you can use functionality provided

by that DLL. To do that, follow these steps:

 1. Select View, Solution Explorer (or View, Other Windows, Solution Explorer in Express Edition) to

ensure that the Solution Explorer is visible.

 2. Right-click on the References folder in Solution Explorer and select Add Reference.

 3. Click the .NET tab in the Add Reference dialog.

 4. Select extensibility from the list of components as shown in Figure 37.11 and click OK.

 You now need to make another change to the class declaration so that your managed class can

make a connection to Expression Web. Change the class declaration from this:

 public class AddinUtility

 to this:

 public class AddinUtility : Extensibility.IDTExtensibility2

 note
 In this section, I show you the
steps necessary to create a man-
aged class that you can call from
a JavaScript add-in. I won’t go
into detail on some of the con-
cepts presented because creat-
ing managed classes is outside
the context of this book.

38_9780789749192_ch37.indd 68438_9780789749192_ch37.indd 684 5/31/12 10:32 AM5/31/12 10:32 AM

685Accessing Managed Classes from JavaScript

37

C
H

A
P

T
E

R

 Don’t press Enter after adding this code. Instead, hover over the word “Extensibility” and click the

button that appears beneath it. Select Implement Interface ‘Extensibility.IDTExtensibility2’ from the

menu that appears as shown in Figure 37.12 . When you do, Visual Studio adds some required code

to your class.

 Figure 37.11
 Adding a reference to the extensibility
DLL.

 Figure 37.12
 Implementing the
 IDTExtensibility
interface requires
some code to be
added to your class.

38_9780789749192_ch37.indd 68538_9780789749192_ch37.indd 685 5/31/12 10:32 AM5/31/12 10:32 AM

Creating and Manipulating an Add-in User Interface686

8

P
A

R
T

 You may notice that each of the functions that are part of the

 IDTExtensibility2 interface contain the following line of code:

 throw new NotImplementedException();

 This line causes an error to occur when any of these functions are

called. Because Expression Web calls the OnConnection function

automatically when your add-in loads, you need to remove this

line of code from that function. After you do, the OnConnection

function should contain no code at all.
 Now we need to add a function to our managed class that we

can call from JavaScript. For this example, we add a function that

returns the amount of memory that the Expression Web process

is using, something that’s not possible using the JavaScript API.

 Add the following function to the code for the AddinUtility

class. Make sure that you add this code immediately after the

opening curly bracket for the class.

 public Int64 GetMemoryUsage()

 {

 long totalMemory;

 Int64 privateMemory;

 System.Diagnostics.Process webProcess =

 System.Diagnostics.Process.GetCurrentProcess();

 totalMemory = webProcess.PrivateMemorySize64;

 totalMemory = (totalMemory / 1024) / 1024;

 privateMemory = Convert.ToInt64(totalMemory);

 return privateMemory;

 }

 This code uses the System.Diagnostics.Process.GetCurrentProcess function to return a ref-

erence to the ExpressionWeb.exe process. It then uses the PrivateMemorySize64 property of the

process to find out how much memory is being used by the process. PrivateMemorySize64 returns

the memory usage in bytes, so that value is converted to megabytes and assigned to the private-

Memory variable. The function then returns the privateMemory variable.

 Once you’ve added this code, compile the AddinUtility class by selecting Build, Build

ManagedClass. Visual Studio compiles your DLL and saves it to the bin\Debug folder within your

project’s folder. Copy ManagedClass.dll from that folder to your add-in’s folder.

 Editing the Add-in Manifest to Load the Managed Class
 Managed classes are loaded by using the load element in the add-in’s manifest. To load the

 ManagedClass.dll assembly, add the following code into the addin.xml file in your add-in’s

 note
 IDTExtensibility2 is a special
programming construct called an
 interface and using an interface
is called implementing the inter-
face . An interface is a kind of
programming contract, and when
you implement an interface, you
agree to abide by that contract.
The code that Visual Studio
adds to your class is part of that
contract.

 tip
 If you want some code to run
when your add-in loads, you
can put that code into the
 OnConnection function.

38_9780789749192_ch37.indd 68638_9780789749192_ch37.indd 686 5/31/12 10:32 AM5/31/12 10:32 AM

687Summary

37

C
H

A
P

T
E

R

folder. For reference, I’ve included the addin element in the following code. However, you’ll want to

add only the load element into your manifest.

 <addin developer=”yes”>

 <load type=”ManagedClass.AddinUtility,ManagedClass” name=”util”/>

 Save your manifest and close and reopen Expression Web if neces-

sary.

 Calling the Managed Class
 To call the GetMemoryUsage from your JavaScript add-in, open

 panel.htm and locate the following line of code in the ClearPanel function:

 blank.innerHTML = “<p>Open a web page to display properties.</p>”;

 Add the following two lines directly under the existing line:

 blank.innerHTML += “<p>Memory usage: MB</p>”;

 SetLabel(“memSize”, util.GetMemoryUsage());

 This code defines a new span for displaying the memory used. It then calls the GetMemoryUsage

function in the managed class using the util namespace as defined by the load element added to

the manifest. The SetLabel function is used to set the innerText of the span to the value returned

by the GetMemoryUsage function.

 Save panel.htm and right-click within the Page Info panel and

select Refresh. If you open any page and then close all pages, you

see a message in the panel that tells you how much memory is

being used by Expression Web.
 In this example, you’ve seen how you can use a managed class to

obtain functionality that’s not possible from the JavaScript API.

The possibilities available when using managed classes are almost

infinite. For more information on what’s possible using the .NET

Framework, see the .NET Framework Developer Center at http://

msdn.microsoft.com/en-us/netframework/default.aspx .

 Summary
 In the past two chapters, you learned some of what’s possible with the JavaScript API. You also

learned how to extend that functionality by creating a managed class and calling functions on that

class from your JavaScript add-in.

 You now have the basic skills necessary to create your own add-ins for Expression Web. You know

how to create a manifest, add menu and toolbar items, create panels, and create dialogs.

 In the next chapter, you learn how you can troubleshoot and debug your add-ins as you develop

them. You learn about ways you can troubleshoot your add-ins from within Expression Web, and

you also learn how you can use Visual Studio’s powerful debugging features to debug your add-ins.

 note
 The details of the load element
were covered in Chapter 36 .

 note
 Don’t be alarmed if you see
that Expression Web is using
more than 100MB of memory.
Expression Web is a managed
process, and managed processes
typically use more memory than
other processes.

38_9780789749192_ch37.indd 68738_9780789749192_ch37.indd 687 5/31/12 10:32 AM5/31/12 10:32 AM

38_9780789749192_ch37.indd 68838_9780789749192_ch37.indd 688 5/31/12 10:32 AM5/31/12 10:32 AM

